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Abstract 

Due to the swelling human suffering caused by climate change and the rapidly exhausting 

reserve of fossil fuels, renewable energy generation processes have gained immense 

importance throughout the globe. Wind energy is a leading renewable power generation 

method. To advance the green transition of the electricity generation industry, wind farms 

should stay commercially sustainable. This paper aims to increase the yearly profit of a 

wind farm utilizing an enhanced genetic algorithm. A novel method of dynamically allotting 

the crossover and mutation probabilities has been proposed to increase the effectiveness of 

the genetic algorithm. The assessment results validate the superior competence of the 

proposed tactic over the standard invariable method of assigning the crossover and mutation 

factors.  
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1. Introduction 

Renewable power generation techniques recommend a thriving alternate amid the mounting 

universal disquiet for the constricted hoard of fossil fuels and their hazardous aftermaths on 

nature. The expenditure of Wind Power Generation (WPG) has fallen dramatically over the 

previous two decades all over the world. Remarkably, during the Covid-19 associated 

restrictions in 2020, the utilization of renewable energy underwent an upsurge of 3% 

whereas the necessity of all fossil fuels plunged across the globe. 

The portion of renewable energy in overall energy generation has widened from 19.75% in 

1990 to 26.62% in 2019 which is a reasonable indication of the international trend towards 

low-carbon alternatives of energy resources. Global renewable energy consumption has 

developed from nearly 941 TWh in 1965 to approximately 7027 TWh in 2019 while the 

WPG sector has progressed exponentially ever since the preliminary years of the twenty-

first century. Global cumulative WPG capacity has expanded from nearly 20 GW in 2000 

to 650 GW in 2019 with a forecast of achieving 4042 GW by 2050. Global wind power 
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consumption per capita, which was merely 1.89 kWh in 1990, underwent a colossal 

amplification in the past three decades and reached 458.94 kWh in 2019. Cumulative WPG 

capacities of nations have been shown in Fig. (1). 

 

Figure 1: Cumulative Wind Power Generation Capacity as of 2019 

Şişbot et al. have engaged Genetic Algorithm (GA) for optimizing the layout of a WPG unit 

in Gökçeada isle. Saroha and Aggarwal offered a model intended for WPG evaluation with 

GA and Neural Network (NN). Huang et al. suggested another NN-empowered GA 

procedure for conjecturing wind power potential. Khosa et al. recommended a profitable 

dispatch model for probabilistic wind energy generation with GA. Shin and Lee improved 

the simulation of a generator for WPG through GA. Viet et al. proposed an NN-aided 

procedure with swarm intelligence and GA for wind power estimating. Roy and Das have 

utilized GA and swarm intelligence for WPG expenditure minimization. The global trend 

of WPG project outlay from 1983 to 2017 has been shown in Fig. (2). 
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Figure 2: Yearly Statistics of the Global Levelized Cost of Electricity (LCOE) from 

Onshore WPG System, given in 2016 USD per kilowatt-hour (kWh) from 1983 to 2017 

The current study focuses on maximizing the annual profit of a wind farm with an enhanced 

GA. A novel technique of dynamically allocating the probabilities of crossover and 

mutation has been proposed and its relative effectivity with respect to the conventional 

static method of allocating the crossover and mutation ratios has been evaluated.  

 

2. Objective Function 

The power captured by a Wind Turbine (WT) is evaluated as per Eq. (1). 

 𝑃 =
1

2
𝜌𝐴𝜗3𝐶𝑝𝑐𝑜𝑠𝜃 (1) 

where P signifies the extricated power, ρ is the density of the current of air, A is the cross-

sectional area, v indicates the speed of air, Cp denotes the Betz threshold and θ symbolizes 

the angular imperfection of the yaw system. The objective function has been defined in Eq. 

(2). 

 𝑄 = [𝑀 − 𝑁] × 𝑃𝑎𝑛𝑛𝑢𝑎𝑙 (2) 

Where Q denotes the yearly profit, M signifies the marketing charge per unit power, N 

represents the generation price per unit WPG and Pannual indicates the yearly generated 

power. The current research work deemed the WPG expense function stated by 

Bhattacharjee et al. (2021) for calculating the annual profit of a wind farm. The wind flow 

pattern considered in the present study has been shown in Fig. (3). 

 

Figure 3. Wind Flow Pattern 
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3. Proposed Enhanced Genetic Algorithm 

GA is an evolutionary exploring method to propose results for optimization study by 

representing the progression of ecological predilection. It has been implemented in several 

scientific disciplines for determining choice-building challenges.  

The algorithm has succinctly discoursed in the following manner. 

1. Establish the essential features like populace extent and recurrence amount. 

2. Instigate the population chaotically. 

3. Scrutinize the appropriateness of distinctive chromosomes. 

4. Assume the crossover process in the subsequent method: 

4.1 Choose a fraction indiscriminately between 0 and 1. If it is not as much of the 

possibility of the crossover technique, propose the chromosome as the parent unit. 

4.2 Stimulate the crossover activity. 

4.3 Revise the relevance of the descendants. 

4.4 If the inheritor is suitable, adapt it into the fresh population.  

5. Accomplish the mutation technique in the succeeding method: 

5.1 Choose a factor unpredictably in the midst of 0 and 1. If it is not as much of the 

probability of mutation, elect for the unit for the mutation technique. 

5.2 Commence the mutation process. 

5.3 Confirm the recently mutated units for their practicality. 

5.4 Combine the mutated and possible units into the current population. 

6. Review the suitability of the fresh units shaped by crossover and mutation approaches. 

7. Stipulate the most optimized result concerning the choice-maker’s partiality. 

For the present study, the dynamic crossover and mutation probabilities have been 

calculated by Eqs. (3) and (4). 
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 𝑐𝑑 = 𝑐1 + {(
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3
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 𝑚𝑑 = 𝑚1 + {(
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2
) (

𝑅𝑐

𝑅ℎ
)

3
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Where cd is the escalating crossover factor. c1 and c2 are the bounds of the crossover 

proportion. md is the intensifying mutation factor. m1 and m2 are the bounds of the mutation 

ratio. Rc indicates the current recurrence number and Rh represents the maximum recurrence 

amount.  

The static values of crossover (c) and mutation (m) ratios have been computed as per Eqs. 

(5) and (6). 

 𝑐 =
𝑐1+𝑐2

2
 (5) 

 𝑚 =
𝑚1+𝑚2

2
 (6) 

 

4. Results and Discussions 

For the present study, two layouts of sizes of 3000 m x 3000 m and 4000 m x 4000 m have 

been deemed. c1 and c2 have been considered as 0.6 and 0.4 correspondingly. m1 and m2 

have been deemed as 0.06 and 0.04 respectively.  

The extreme number of recurrences has been considered as 50. Population size has been 

deemed as 20. A 1.5 MW turbine with a radius of 38.5 m has been engaged. For decreasing 

the wake shortage, the space between two nearby WTs has been maintained as 308 m.  

The cost-related variables and their values required for calculating the WPG cost function 

as described by Bhattacharjee et al. (2021) have been presented in Table 1. 

Variable Considered Value 

Turbine Price USD 750,000 

Sub-Station Price USD 8,000,000 per Sub-Station 

Count of Turbines per Sub-Station 30 

Percentage of Interest 3% 

Yearly Operation and Maintenance Charge USD 20,000 

Probable Operative Lifespan 20 Years 
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Table 1 Values of WPG Cost Linked Parameters 

The minimum and highest operative speeds for WT are 12600 m/hr. and 72000 m/hr. The 

optimal placements of WTs for 3000 m x 3000 m and 4000 m x 4000 m attained using the 

conventional static approach of assigning the crossover and mutation ratios have been 

shown in Figs (4) and (5) respectively. 

 

Figure 4. Optimal Placement of Wind Turbines Using Static Approach of Assigning the 

Crossover and Mutation Ratios for 3000 m x 3000 m Layout 

 

Figure 5. Optimal Placement of Wind Turbines Using Static Approach of Assigning the 

Crossover and Mutation Ratios for 4000 m x 4000 m Layout 

The optimal placements of WTs for 3000 m x 3000 m and 4000 m x 4000 m attained using 

the proposed approach of dynamically assigning the crossover and mutation ratios have 

been shown in Figs. (6) and (7) respectively. 
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Figure 6. Optimal Placement of Wind Turbines Using Proposed Approach of Dynamic 

Assignment of the Crossover and Mutation Ratios for 3000 m x 3000 m Layout 

 

Figure 7. Optimal Placement of Wind Turbines Using Proposed Approach of Dynamic 

Assignment of the Crossover and Mutation Ratios for 4000 m x 4000 m Layout 

The selling price of WPG has been deemed as USD 0.033/kWh. The optimal values of 

annual profits and corresponding counts of turbine attained by the static and dynamic 
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approaches of allocating the crossover and mutation ratios for both layouts have been 

presented in Table 2. 

Allocation of 

Crossover and 

Mutation Ratios 

Optimal Yearly 

Profit for 3000 

m x 3000 m 

Layout (in 

USD) 

Optimal 

Amount of 

Wind Turbines 

for 3000 m x 

3000 m Layout 

Optimal Yearly 

Profit for 4000 

m x 4000 m 

Layout (in 

USD) 

Optimal 

Amount of 

Wind 

Turbines for 

4000 m x 4000 

m Layout 

Static Approach 25146 93 42686 145 

Proposed Dynamic 

Approach 
25579 90 43571 153 

Table 2 Comparison of Optimal Annual Profit and Turbine Count 

The study results validate the predominance of the proposed dynamic approach over the 

standard static approach for both layouts as it realized the highest annual profit as indicated 

in Table 2. The outcomes prove that the yearly profit of the proposed WPG location 

upsurges with the augmentation of the amount of WTs for the 3000 m x 3000 m layout. 

While the yearly profit declines with the augmentation of the amount of WTs for 4000 m x 

4000 m layout for enlarged generation expenditure. 

The enlarged productivity of the wind farm allows the enhanced sustainability of the WPG 

ventures and reinforces the progression of emission manipulation for the power generation 

businesses. The capable location of WTs by the projected optimization approach can benefit 

the WPG trades to attain elevated fiscal reimbursements without escalating the layout 

region and evading added outlay in terrestrial possessions. 

 

5. Conclusion 

Global societies are continually endeavoring to decrease the carbon footprints by efficient 

application of renewable resources. Worldwide societies are constantly endeavoring in the 

direction of diminution of climate change through efficient application of clean energy 

generation techniques wind energy as projected by the Paris treaty of 2015 and COP-26 of 

2021.   

The present study aims to maximize the yearly profit of a wind farm. Comparative study of 

standard static and the projected dynamic tactics for allotting the possibilities of crossover 

and mutation ratios for the genetic algorithm-based profit expansion of the wind farm. The 

optimization results confirm the enhanced suitability of the proposed dynamic technique 

over the usual static method of allocating the crossover and mutation ratios for improving 

the layouts with the greatest yearly profit. 
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The present research can initiate fresh opportunities for wind farm layout optimization and 

financial sustainability of wind farms.  
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[13] Şişbot, S., Turgut, Ö., Tunç, M., & Çamdalı, Ü. (2010). Optimal positioning of wind 

turbines on Gökçeada using multi-objective genetic algorithm. Wind Energy, 13(4), 297-

306. 

[14] Sitharthan, R., Swaminathan, J., & Parthasarathy, T. (2018). Exploration of Wind 

Energy in India: A Short Review. 2018 National Power Engineering Conference (NPEC). 

IEEE. doi:10.1109/npec.2018.8476733 

[15] Statistical Review of World Energy. (2020). Retrieved September 05, 2020, from BP: 

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-

energy.html 

[16] Turing, A. (2004). Computing Machinery and Intelligence (1950). In The Essential 

Turing. Oxford University Press. doi:10.1093/oso/9780198250791.003.0017 

[17] Viet, D., Phuong, V., Duong, M., & Tran, Q. (2020). Models for Short-Term Wind 

Power Forecasting Based on Improved Artificial Neural Network Using Particle Swarm 

Optimization and Genetic Algorithms. Energies, 13(11), 2873. 

[18] Wu, Z., & Wang, H. (2012). Research on Active Yaw Mechanism of Small Wind 

Turbines. Energy Procedia, 16, 53–57. doi:10.1016/j.egypro.2012.01.010 

 

 

 


	1_JISOM 15.2 (in work) - Front
	2_JISOM 15.2 (in work) - Content

